Dialect mismatch: Implications for academic achievement

Jan R. Edwards, Peggy Rosin, Megan Gross, Jianshen Chen, and Allison Holt

Funded by:
Wisconsin Institutes for Discovery Seed Grant,
Friends of the Waisman Center,
and NIDCD grant RO1 02932
Disclosure

We have no relevant financial or nonfinancial relationships to disclose.
Organization of talk

• **Study 1**
 – Does speaking a non-mainstream dialect make it more difficult to understand MAE?

• **Study 2**
 – Can we teach pre-kindergarten children about MAE in a short-term program?
The biggest problem in education in the U.S.

The achievement gap
Poverty results in many stressors on children

Stressors: Poor nutrition, poor medical care, higher levels of family stress, etc.
Poverty also results in poorer access to resources

Resources: School funding, quality of teachers, quality of medical care, etc.
Linguistic consequence of poverty

- Non-mainstream dialect
 - Not a result of poor education, poor language skills, etc.
Dialect mismatch

Dialect of instruction ≠ Home dialect
Mainstream American Non-mainstream
English (MAE) dialect of English

ASHA Convention, 16 November, 2013
African American English

• Phonological differences
• Morphosyntactic differences
• Pragmatic differences

ASHA Convention, 16 November, 2013
How dialect mismatch may contribute to the achievement gap

1. Teacher expectations
2. Cognitive effort
3. Direct impact on decoding, etc.

ASHA Convention, 16 November, 2013
Previous research

• Children with higher dialect density (kindergarten to second grade) have poorer language and literacy skills (Patton Terry & Connor, 2012; Patton Terry et al., 2012).

• Children who are less able to dialect-shift from AAE to MAE have poorer language and literacy skills (Craig et al., 2013).

• All of this work correlates measures of dialect density (or dialect shifting) with standardized measures of language and literacy.
Study 1

- Study 1: Comprehension of MAE
 - How well do AAE-speaking children comprehend words that have endings that are contrastive in MAE but not in AAE?
 - What predicts children’s performance on this task?
Study 1: Participants and general procedure

• Participants
 – 105 African American children
 – 4- to 8-year-olds
 – Most spoke AAE.
 – Mostly from low-SES families

• General Procedure
 – 1 to 3 sessions
 – All children received a hearing screening, language sample, and standardized tests of receptive and expressive vocabulary.
 – Parents filled out demographic questionnaire.
Study 1: Participants and general procedure

• Dialect density
 – Measured from 50-utterance recorded language sample.
 – Sample elicited in conversation with a native AAE speaker.
 – Both morphosyntactic and phonological dialect features coded by a native AAE speaker.
 – Dialect density = number of dialect features/total number of words.
 – Dialect density ranged from 0 (3 children) to .28, mean = .06.
 – Only 85 children (out of 105) produced useable language samples.
Study 1. MAE comprehension: Stimuli

• Phonological contrast:
 – Final consonant cluster deletion
 – *coal* vs. *cold*
 – *coal* is ambiguous in AAE, but not in MAE

• Morphosyntactic contrast:
 – Plural marking
 – *cat* vs. *cats*
 – Plural is optional in AAE

• Stimuli recorded in AAE and MAE
Experiment 1. MAE comprehension: Procedure

• Training phase:
 – Each target picture named in AAE.
 – Child asked to name each target picture (*say _____ please*).

• Testing phase:
 – Point to ________ (in MAE).

“Point to goal”

Distracter Filler Target
Experiment 1. MAE comprehension: Results

<table>
<thead>
<tr>
<th></th>
<th>Singleton Consonant (Ambiguous Condition)</th>
<th>Consonant Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phonological</td>
<td>61 (31)</td>
<td>81 (19)</td>
</tr>
<tr>
<td>Morphosyntactic</td>
<td>65 (15)</td>
<td>74 (16)</td>
</tr>
</tbody>
</table>

- Ambiguous (in AAE) conditions were the most difficult.
- Accuracy was predicted by:
 - Expressive vocabulary size
 - Dialect density
Experiment 1. MAE comprehension: Results

Left Panel:
- Accuracy on MAE word comprehension task vs. Expressive vocabulary size
- \(R^2 = .27 \)

Right Panel:
- Accuracy on MAE word comprehension task vs. Dialect density
- \(R^2 = .28 \)
Experiment 1. Structural equation model

• What are the relationships among the measures that predict comprehension of MAE?

• Divided variables into:
 – Input variables
 – Mediating variables
Experiment 1. MAE comprehension: Discussion

• Non-mainstream dialect speakers do have difficulty understanding MAE.
• This was particularly true for words that are ambiguous in AAE, even though they are unambiguous in MAE.
• Both expressive vocabulary and dialect density independently predicted comprehension of MAE.
Study 2: A pre-kindergarten readiness program for non-mainstream English speakers

Talking & Learning for Kindergarten: TALK

ASHA Convention, 16 November, 2013
TALK: Purpose

Develop an effective curricular supplement to teach pre-kindergarten children about the differences between MAE and non-mainstream dialects in the context of an emergent literacy curriculum.

See www.learningtotalk.org/publications/presentations to download TALK manual.
TALK: Principles

• Use evidence-based practice language & literacy instruction

• Build metalinguistic skills

• Combine embedded and direct instruction

• Preselect NMAE-MAE contrasts and targets

• Encourage dialect shifting
TALK: Structure

- Head Start kindergarten readiness program
- Led by graduate students in speech-language pathology
- 7 weeks, 4 days per week (1 hour per day)
 - Opening circle
 - Rhyme time
 - Talk time
 - Closing circle
- Additional 1 hour per day classroom facilitation
TALK: Targeted areas

<table>
<thead>
<tr>
<th>Area</th>
<th>TALK target example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phonology</td>
<td>Word-final cluster deletion</td>
</tr>
<tr>
<td>Morphosyntax</td>
<td>Obligatory plural</td>
</tr>
<tr>
<td>Pragmatic</td>
<td>Indirect requests</td>
</tr>
<tr>
<td>Metalinguistic</td>
<td>Dialect shifting</td>
</tr>
<tr>
<td>Phonological awareness</td>
<td>Rhyming</td>
</tr>
<tr>
<td>Early literacy</td>
<td>Story telling</td>
</tr>
</tbody>
</table>

ASHA Convention, 16 November, 2013
TALK: Activities

- **Weekly Themes**
 - Vocabulary

- **Talk Time**
 - Shared book reading
 - Dramatic play

- **Rhyme Time**
 - Music and movement
 - Phonological and phonemic awareness

ASHA Convention, 16 November, 2013
Language

• Semantic/vocabulary
• Compound/complex sentences
• Narrative
 – Character
 – Setting
 – Feeling
 – Problem
 – Resolution
• Sequencing
 – First, second, third
 – Beginning, middle, end
Phonological & Phonemic Awareness

• Long vs. short words
• Script – Cue for rhyme
• Repeated song
• Rhyme Games
 – Matching
 – Creation
 – Production
 – Oddity

ASHA Convention, 16 November, 2013
Phonological & Phonemic Awareness

- Segmenting
 - “Break it Down”
 - Compound words, syllables
 - CVC words
 - Letter-sound correspondence through counting e.g., magic wand, Elkonin cards

- Blending
Alphabetic Principle

• Recognizes name
• Recites alphabet song
• Points to letters
• Says letters
• Knows letter sound correspondence
Phonological Contrasts

- Word-final pre-vocalic consonant cluster reduction
 - “best” = [bes]
- Methathesis “ask” = aks
- Deletion of final /l/ or /r/ after the vowel /o/
 - “door” = “doe”
Morphosyntactic Contrasts

• Zero marking of plurals
• Zero possessives
• Absent copula
• Absent auxiliary

ASHA Convention, 16 November, 2013
Pragmatic Skills

- Listening
- Using a school voice
- Introductions
- Talking differently based on context
- Politeness
- Indirect requests
Suggestions for Effective Implementation

• Teacher Collaboration
• Short activities
• Techniques for smooth transitions
• Emphasis on Team Building
• Introduce themed related vocabulary
• Incorporation of media
Study 2. TALK: Results

• 13 children in TALK; 8 children in control classroom
• Evaluation included:
 – Pre & post testing.
 – Parent questionnaires.
 • Very positive responses from parent questionnaires
Study 2. TALK: Results

Comprehension of MAE

% correct on MAE comprehension task

<table>
<thead>
<tr>
<th></th>
<th>TALK curriculum</th>
<th>Control classroom</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morph contrast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambig. words</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASHA Convention, 16 November, 2013
Study 2. TALK: Results

Phonological Awareness

<table>
<thead>
<tr>
<th>Standard score</th>
<th>Blending</th>
<th>Rhyming</th>
<th>Word Compl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TALK curriculum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control curriculum</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASHA Convention, 16 November, 2013
Discussion

• In a relatively short period of time, the TALK curriculum was effective.
 • Authentic Assessment

• Need to follow children to see if it makes a difference.
General discussion and conclusions

• **Study 1**: Dialect mismatch between the home dialect and the language of instruction puts non-MAE speaking children at a disadvantage.
 • Difficulty with comprehension of words that are ambiguous in native dialect, but not in MAE.
 • Both expressive vocabulary size and dialect density independently predicted performance.
• **Study 2**: We can teach young children a lot about the language of instruction in a relatively short period of time.
• **Wonderful collaborators**: David Kaplan, Maryellen Macdonald, and Mark Seidenberg.

• **Research team**: Elisabeth Bownik, Ruby Braxton, Megan Brown, Alia Dayne, Brittany Manning, and Alissa Schneeberg.

• **Generous support**: Wisconsin Institutes for Discovery Seed Grant, Friends of the Waisman Center, and NIDCD Grant R01 02932.

• **Most of all**: The parents who gave their consent and the children who participated in the project!!!