Evaluating an Implicit Measure of Phonological Awareness in Preschool Children

Michelle Erskine, Jan Edwards, and Mary E. Beckman

University of Wisconsin-Madison / Ohio State University

BACKGROUND

Rationale

- Phonological awareness (PA) is a strong correlate and early indicator of reading and writing achievement in school-age children.
- Current paradigms can reliably evaluate PA skills at age 5 using explicit phonological manipulation tasks, as in:
 - Standardized measurements such as the Comprehensive Test of Phonological Processing (CTOPP -2) (Wagner et al., 2013).
 - Informal assessments of word blending and word segmenting.
- However, it is difficult to use such explicit measures to assess PA at age 3.
- There are several well known correlates of PA including:
 - Vocabulary (expressive and receptive) and speech perception.
 - PA at age 3.

Methods

Stimuli

- A subset of children (24 of 200) from an ongoing longitudinal study.
- Ages: 3.0 (+/- 2 months) at time 1 and 4.0 (+/- 1 month) at time 2.
- Monolingual English speakers with typical speech and language development.

Procedure

- On each trial, each of a pair of images presented and named by the computer and audio stimulus were presented and named by the child was asked to "Say what the computer said."
- Each target nonword was paired with a picture of an unfamiliar object in a picture-prompted auditory-word-repetition task.
- Accuracy, the frequency effect.

Results

Nonword Repetition Task

- Stimuli were 22 pairs of nonsense words adapted from Edwards et al., 2004.
- Each pair included a 2-phoneme sequence that contrasted in phonotactic probability (e.g. high frequency /fr versus low frequency /fc).
- Stimuli were recorded in both Mainstream American English (MAE) and African American English (AAE).
- Children were presented the stimuli that matched their native dialect.
- Each target nonword was paired with a picture of an unfamiliar object in a picture-prompted auditory-word-repetition task.
- "tweeter"

Expressive Vocabulary

- The effect of phonotactic probability on nonword repetition accuracy (frequency effect) was quantified by:
 - Subtracting the mean scores for the low-frequency sequences from the mean scores for the high-frequency sequences.
 - Linear regression was used to evaluate what measures predicted PA at age 4.
 - Dependent variable: CTOPP -2 Evt scaled score.
 - Independent variables: PPVT -4 standard score, EVT -2 standard score, Minimal Pairs % correct, nonword repetition accuracy, the frequency effect.

Analysis

- The effect of phonotactic probability on nonword repetition accuracy (frequency effect) was quantified by:
 - Subtracting the mean scores for the low-frequency sequences from the mean scores for the high-frequency sequences.
 - Linear regression was used to evaluate what measures predicted PA at age 4.
 - Dependent variable: CTOPP-2 Elision scaled score.
 - Independent variables: PPVT -4 standard score, EVT -2 standard score, Minimal Pairs % correct, nonword repetition accuracy, the frequency effect.

Discussion

- The results suggest that improving speech perception skills at age 3 may result in better PA at age 4. We plan to explore this claim further using SEM when the remaining participants have been tested at age 4.

Summary and Discussion

- The results in analysis 6 suggest that we do not yet have an implicit measure of PA that can be used for children at age 3.
- A measure of speech perception (minimal pairs task) at age 3 accounted for a substantial proportion of the variance in PA at age 4.
- Previous studies have focused on receptive vocabulary as opposed to expressive vocabulary. This study showed that expressive – rather than receptive – vocabulary at age 3 predicted more of the variance in PA.

Acknowledgments

Research supported by NICHD Grant R01-02932 to Jan Edwards, Mary E. Beckman, and Benjamin Munson and by NICHD Grant P30-HD03352 to the Wisconsin Center. We also thank the third PI on this project, Benjamin Munson; the L2T research teams at UW-Madison and at University of Minnesota, who helped collect the data; Jamie Anderson and Haley Webb of UMN, who helped transcribe the nonwords; Patrick Reidy of OSU, who helped with the data crunching of the transcriptions; and the children who participated in the study and the parents who gave their permission.