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Abstract
Children learn words by listening to caregivers, and the quantity and quality of early language
input predict later language development. Recent research suggests that word recognition
efficiency may influence the relationship between input and vocabulary growth. We asked
whether language input and lexical processing at 28–39 months predicted vocabulary size one year
later in 109 preschoolers. Input was measured using adult word counts from LENA recordings.
We used the visual world paradigm and measured lexical processing as the rate of change in
proportion of looks to target. Regression analysis showed that lexical processing did not constrain
the effect of input on vocabulary size. We also found that input and processing were more reliable
predictors of receptive than expressive vocabulary growth.

Introduction
Vocabulary size is a robust predictor of language development. By amassing a large
vocabulary of words, children learn morphosyntactic regularities (Marchman & Bates, 1994)
and develop the phonological representations that subserve future reading skills (Walley,
Metsala, & Garlock, 2003). Early delays in word learning can predict subtle group
differences in vocabulary, syntax, and verbal memory assessment scores in the school-age
years (Rescorla, 2009), and preschool expressive vocabulary and sentence complexity
predict literacy development (Scarborough, 2009). Studying individual differences in word
learning and how these differences emerge can inform our understanding of how differences
in language ability emerge as well.

What does it take to learn words? In an abstract sense, children are word-learning machines,
converting language input from caregivers into linguistic knowledge and spoken words of
their own. In this formulation of the problem, children learn words by discovering and
extracting regularities from their environment. Consequently, we may consider two axes that
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constrain word learning: the teaching environment and the child’s ability to process and
extract information.

There is a well-established literature documenting how environmental factors influence
language development (Hoff, 2006). In particular, the amount of early language input from
caregivers predicts language development later on (e.g., Hart & Risley, 1995; Hoff, 2003;
Huttenlocher, Haight, Bryk, Seltzer, & Lyons, 1991; Rowe, 2012). In a landmark study, Hart
and Risley (1995) found that children from different socioeconomic backgrounds
experienced very different language environments. Children from higher SES families,
compared to children from lower SES families, heard more words (tokens) and more
different words (types) and showed better language outcomes. The reported “30 million
word gap” in cumulative language input between high-SES and low-SES families has
become a public health issue and the target for high-profile interventions (Shankar, 2014).

Although greater language input predicts greater language outcomes, there is no reason to
think all words are equally informative. Research on input “quality” has examined whether
some features of language input are more important and more informative than others for
shaping language outcomes. Hoff (2003) found that features of caregivers’ speech explained
word-learning differences in two-year-olds from families with high school-educated mothers
versus college-educated mothers. In particular, SES category explained little variance in
vocabulary growth over and above caregiver mean-length of utterance, baseline vocabulary
size, and child birth order. Hoff (2003) concluded that SES influences caregiver speech, but
it is caregiver speech that drives language learning “by providing data to the child’s word-
learning mechanisms” (p. 1374). In this case, data from high-SES families included more
word types and tokens and longer utterances.

A child’s environment predicts language outcomes. Large changes in environment,
measured by socioeconomic differences, predict group differences in the quantity and make-
up of child-directed speech. But even within SES groups, families vary considerably in
measures of child-directed speech (Weisleder & Fernald, 2013). There is also a quality-
versus-quantity dimension to language input—not all words or utterances are equally
educational—but language quantity may provide a reasonable approximation of the amount
of high-quality learning experiences available to a child.

We now consider the other axis for word learning: a child’s ability to process information.
Speech perception, segmentation, and recognition skills measured in the first year predict
vocabulary measures in the second and third years (see Cristia, Seidl, Junge, Soderstrom, &
Hagoort, 2014 for a systematic review). For example, in a conditioned head-turn speech
perception experiment with 6-month-olds, Tsao, Liu, and Kuhl (2004) found the number of
trials needed to reach a criterion performance correlated with expressive vocabulary at 24
months (r = −.48). In this case, children who needed fewer trials to learn a contrast
developed larger vocabularies 18 months later. Kuhl et al. (2008) found that event-related
potentials at 7.5 months predicted vocabulary growth such that children who were more
sensitive to native phonetic contrasts had larger vocabularies at 18 and 24 months compared
to children who were more sensitive to non-native contrasts. Finally, a meta-analysis of six
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speech segmentation studies by Junge and Cutler (2014) found a median correlation of .33,
95% CI [.17, .48] between word segmentation measures and later language outcomes.

Infants who are better at extracting the sounds and shapes of words in their ambient
language have larger vocabularies in toddlerhood. The ability to process words (lexical
processing or word recognition) also predicts future language outcomes. This kind of
processing is commonly assessed by eyetracking tasks which measure how quickly and
reliably a child fixates on an image after hearing its label. In this paradigm, short-term and
long-term effects have been found between processing and later outcomes. Fernald and
Marchman (2012) found that late-talking toddlers with faster lexical processing at 18
months were more likely to move into the normal range of vocabulary scores by 24 months.
Marchman and Fernald (2008) found that accuracy and speed of lexical processing at age
two predicted language and working memory scores at age eight. Lany (2017) found a
relationship between speed of lexical processing and novel word learning in 18-month-olds
and 30-month-olds. Children who were faster at recognizing familiar words were also more
accurate at recognizing novel words in a word-learning task.

Both language environment and ability to process speech can shape language outcomes, but
only a few longitudinal studies have considered how these two factors work together.
Newman, Rowe, and Bernstein Ratner (2015) examined how language input and processing
at 7 months predicted vocabulary at 24 months. They found that amount of time listening to
novel (unfamiliarized) words predicted vocabulary size, as did type-token-ratio of caregiver
speech such that more repetitive speech predicted larger vocabularies. These two predictors
jointly predicted vocabulary size, but did not significantly interact and were weakly
correlated. Therefore, they concluded the learning environment and the child’s processing
ability supported language development independently.

In eyetracking studies with older children, however, mediating relationships have been
found between input and lexical processing. Hurtado, Marchman, and Fernald (2008) found
that maternal talk at 18 months predicted lexical processing speed and vocabulary size at 24
months in 27 Spanish-learning children from predominantly low-SES families. Processing
speed mediated the effect of input on vocabulary size, suggesting that maternal input
provides practice for processing words and children who are more efficient at recognizing
words learned more words. Vocabulary size, however, also mediated the effect of maternal
speech on processing speed. Because processing and vocabulary size were measured at the
same time, it is not clear which mediation path (or both, in some reciprocal effect) better
explains the data. In short, these the measures are interrelated, with maternal input
predicting future processing and vocabulary outcomes.

In a very similar study, Weisleder and Fernald (2013) studied 29 Spanish-learning children
from low-SES families and found that processing and language input at 19 months of age
predicted vocabulary size at 24 months. Lexical processing, however, mediated the effect of
input on future vocabulary. The authors concluded that increased input affords more
opportunities to practice recognizing words and that greater processing efficiency facilitated
word learning. Another important question, however, is whether the beneficial effects of
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language input on later vocabulary size are constrained by the child’s ability to efficiently
process that input.

Although a body of research shows that processing measures in infancy and toddlerhood
predict future vocabulary size, it is unclear whether this relationship holds in older children,
even just beyond toddlerhood. Are children who are more efficient at processing language
better word-learners more generally, or is this relationship observed only at the earliest
stages of word learning? Children’s vocabularies rapidly develop from about 18 months on,
with 30-month-olds producing five times as many words as 18-month-olds. Furthermore,
some of the early variability in vocabulary size disappears by preschool age (e.g., Paul,
1993; Rescorla, Mirak, & Singh, 2000). Failure for this trend to hold for preschool children
would imply that processing is more critical for word learning at younger ages. Perhaps,
preschool children have accumulated enough practice at recognizing familiar words that a
processing advantage no longer translates into an advantage in learning words.

Additionally, it is not clear how environmental and child-level factors will interact in older
children. Given the consistent positive relationship between language input measures and
vocabulary, we would expect input quantity to predict vocabulary growth. In Newman et al.
(2015), input repetitiveness and processing predicted vocabulary size independently,
whereas in Weisleder and Fernald (2013) and Hurtado et al. (2008), the role of input worked
indirectly, as mediated by lexical processing. In an older cohort, however, children might be
fast enough at recognizing words such that input and processing independently predict word
learning.

In this study, we examined the same kinds of variables as Weisleder and Fernald (2013):
lexical processing, amount of language input, and vocabulary size at a future time. Because
our study involved older children (28–39 months at Time 1), and we used different tasks.
Specifically, we used direct measures of vocabulary at both time points, and we measured
lexical processing using the more demanding four-image visual world paradigm rather than
the two-image looking-while-listening paradigm. Because we have vocabulary measures at
both time points, we can study how the environmental and child-level factors predict change
in vocabulary, as opposed to future vocabulary size. Differences in word-learning
trajectories emerge by 18 months (e.g., Frank, Braginsky, Yurovsky, & Marchman, 2016).
Rowe, Raudenbush, and Goldin-Meadow (2012) found that the shape of a child’s
vocabulary growth-curve from 14 to 46 months predicted vocabulary size at 54 months, so it
is important to factor in a child’s prior vocabulary when studying how they accumulate new
words.

Research Questions

We asked whether language input and lexical processing efficiency at age 2 ½–3 predicted
vocabulary size one year later. At the heart of the matter is whether children who are more
efficient at processing language are better word-learners. Processing measures in infancy
and toddlerhood both predict future vocabulary size, and this study asks whether that effect
still holds in this older cohort.
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We also asked how input and processing interacted with each other. One possible interaction
is a moderating relationship where processing efficiency constrains the effect of input on
vocabulary growth. This outcome would imply that word recognition efficiency is a
bottleneck for word learning, even at age 3. Alternatively, we might not observe any
relationships between language input and processing. In this case, processing does not
constrain a child’s ability to learn from ambient speech, so that both support word learning
independently.

Finally, we asked whether language input and processing predict differences in vocabulary
growth. Specifically, we asked whether these measures are useful predictors of future
vocabulary size when controlling for concurrent vocabulary size.

Methods and Measurements
Participants

We report all measurements and data exclusions following guidelines in Nosek et al. (2014).
We examined data from the first two time points of a longitudinal study of preschoolers
from English-speaking households. At Time 1 in the study, the children were 28–39 months
old. During Time 1, we collected our measures of language input, lexical processing and
vocabulary. At Time 2, we collected follow-up vocabulary measures when the children were
39–52 months old.

A total of 172 children provided vocabulary, processing and input data at Time 1. We
excluded 5 children with cochlear implants from the present analysis. We also excluded 16
children identified by parents as late-talkers. Of the remaining children, 139 provided
vocabulary measures at Time 2. As detailed below, we excluded 4 children for having
inadequate home-language recordings and 26 children for having unreliable eyetracking
data. A final total of 109 children were used in the vocabulary analyses. A small subset of
the Time 1 vocabulary and eyetracking data (n = 14) was previously reported in Law, Mahr,
Schneeberg, and Edwards (2016), which analyzed vocabulary size and concurrent lexical
processing in a diverse group of participants. All children underwent a hearing screening at
both time points, and they had normal speech, language, and cognitive development
according to parent report.

Stimuli were presented in children’s home dialect, either Mainstream American English
(MAE) or African American English (AAE). We made an initial guess about what the home
dialect was likely to be based on a number of factors, including the recruitment source and
the child’s address. For most children, the home dialect was MAE. If we thought the home
dialect might be AAE, a native AAE speaker who was a fluent dialect-shifter was scheduled
for the lab visit, and she confirmed the home dialect by listening to the caregiver interact
with the child during the consent procedure at the beginning of the visit. AAE was the home
dialect for 4 of the 109 participants.

Several other measurements were collected as part of the longitudinal study. They are not
analyzed here because we limit attention to only the measures relevant for the analysis of
input, processing, and vocabulary. Other unanalyzed Time 1 tasks were two picture-
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prompted word-repetition tasks (Edwards & Beckman, 2008), an eyetracking task with
mispronunciations of familiar words (Law & Edwards, 2015), a minimal pair discrimination
task (based on Baylis, Munson, & Moller, 2008), a verbal fluency task (WJ-III Retrieval
Fluency subtest, Woodcock, McGrew, & Mather, 2001), a shape stroop task (Carlson,
2005), and an articulation test (GFTA-2, Goldman & Fristoe, 2000). Parents completed the
MacArthur-Bates Communicative Development Inventory (Fenson et al., 2007), an inventory
about executive function (BRIEF-P, Gioia, Espy, & Isquith, 2003), a survey about early
literacy practices in the home (Senechal, 2006), and a demographic survey that included a
multiple-choice question on maternal education level. A similar test battery was used at
Time 2, with the addition of new tasks targeting phonological awareness (CTOPP-2,
Wagner, Torgesen, Rashotte, & Pearson, 2013) and speech perception (SAILS task in
Rvachew, 2006).

Vocabulary

At both time points, children received the Expressive Vocabulary Test, 2nd Edition (EVT-2,
Williams, 2007) and its receptive counterpart, the Peabody Picture Vocabulary Test, 4th

Edition (PPVT-4, L. M. Dunn & Dunn, 2007). In the expressive test, children were
presented an image and had to name it. In the receptive test, children were presented four
images and had to select a named image. For our analyses, we used growth scale values
provided by each test; these values transform raw scores (words correct) into a scale that
grows linearly with age.

Language input

Language input data was collected using a Language Environment Analysis (LENA) digital
recorder, a small device worn by a child (Ford, Baer, Xu, Yapanel, & Gray, 2008). The
device records all audible sounds for up to 16 hours. The recorder and instructions for using
it were given to families. We instructed families to activate the recorder in the morning and
record a typical day for the child. LENA software analyzed each recording to generate a
summary of the child’s language environment (Ford et al., 2008). The measures included 1)
hourly word-counts of adult language in the child’s environment, 2) hourly number of child-
adult and adult-child conversational turns, 3) hourly proportions of meaningful (nearby)
speech, distant speech, noise, television/electronics, and silence, and 4) hourly number of
child vocalizations.

We computed the averages of each of these hourly measurements, excluding data from
hours recorded after midnight. We computed the duration of the remaining before-midnight
data in seconds, computing the number of hours from the number of seconds. This
adjustment corrects for hours where the recording started midway through an hour. The
average hourly adult word count then was the total adult word count in the recording divided
by the number of hours. Our procedure differed that from Weisleder and Fernald (2013):
That study only used the adult word counts from segments that coders had classified as
child-directed.

We excluded recordings that might provide unreliable information. We excluded 3
recordings with less than 10 hours of data recorded before midnight, because such
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recordings undersampled the child’s day. LENA software documentation also recommends
that recordings be at least 10 hours in duration (LENA Foundation, 2015). We excluded 1
recording from a child who did not wear the device.

Lexical processing

Eyetracking procedure—To measure lexical processing, we used the visual world
paradigm, an experimental procedure that has been used with children and adults (e.g.,
Allopenna, Magnuson, & Tanenhaus, 1998; Huang & Snedeker, 2011; Law et al., 2016;
McMurray, Samelson, Lee, & Tomblin, 2010). In this paradigm, images of objects are
presented onscreen followed by a prompt to view one of the images. An eyetracker records
the participant’s gaze location over time. By examining how gaze changes in response to
speech, we study the time course of word recognition. This particular experiment was
described and analyzed in detail in Law et al. (2016).

In this experiment, four photographs of familiar objects appeared on a computer display.
During a trial, a spoken prompt directed the child to view one of the images (e.g., find the
fly). One image was the target (e.g., fly). The other distractor images contained a
semantically related word (bee), a phonologically related word (flag), and an unrelated word
(pen). Target words were presented in carrier frames (see the or find the). Children heard
stimuli that matched their home dialect, either MAE or AAE. We recorded the stimuli from
two young adult female speakers, one a native speaker of MAE and the other a native
speaker of AAE. As noted above, 105 children came from families where MAE was spoken
at home and received stimuli recorded in MAE; 4 children came from families where AAE
was spoken at home and received stimuli recorded in AAE. In a cross-sectional study (Law
et al., 2016) with an equal number of AAE- and MAE-speaking children (n = 30 per group),
we did not observe differences between two dialect versions after controlling for child-level
variables. Therefore, we combined data from both dialect versions in the analysis below.

Children saw 24 unique trials (each with different target words) in an experimental block.
Each word served as the target word once per block. Two blocks of the experiment (each
with different trial orderings and images) were administered. A Tobii T60XL eyetracker
recorded the location of a child’s gaze on the screen at rate of 60 Hz.

Presentation of carrier/target was gaze-contingent. After 2 s of familiarization time with the
images in silence, the experiment paused to verify that the child’s gaze was being tracked.
After 300 ms of continuous gaze tracking, the trial advanced. Otherwise, if the gaze could
not be verified after 10 s, the trial advanced. This step ensured that for nearly every trial, the
gaze was being tracked before playing the carrier phrase, or in other words, that the child
was ready to hear the carrier stimuli. An attention-getter or motivator phrase (e.g., check it
out!) played 1 s after the end of the target word. Every six or seven trials, an animation
played onscreen and the experiment briefly paused to allow examiners to reposition or coach
the child to pay attention.

Data screening—We began with data from 151 children with Time 1 vocabulary scores,
eyetracking data and home-language recordings. Data from 18 children had to be excluded
because of a timing error in the experiment protocol that caused the reinforcer phrase to play
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too early after the target word. Before data screening, we performed deblinking by
interpolating short windows of missing data (up to 150 ms) if the child fixated on the same
image before and after a missing data window. We examined data quality in the 2-s window
following the onset of the target. A trial was considered unreliable if at least 50% of the
eyetracking data during the 2-s window was missing (offscreen). If at least 50% of trials in a
block were unreliable, that block was excluded. We excluded 28 such blocks; 11 children
had all their eyetracking trials excluded in this way. After block-level screening, we
excluded an additional 712 unreliable trials. After screening, 4712 reliable trials remained
from 122 children. Finally, we downsampled our data into 50-ms bins, reducing the
eyetracking sampling rate from 60 Hz to 20 Hz. This procedure smoothed out high-
frequency noise by pooling together data from adjacent frames.

Growth curve analysis—A common measure in eyetracking studies of word recognition
is an accuracy growth curve (Mirman, 2014). We compute this growth curve by aggregating
the number of looks to each image over trials and calculating the proportion of looks to the
target image at each time sample. (We ignored offscreen looks or looks between the images
when computing this proportion.) The growth curve measures how the probability of
fixating on the target changes over time. Figure 1 depicts each participant’s raw accuracy
growth curve and the overall mean of the growth curves. On average, a child had a 25%
chance of viewing the target image at the onset of the target word and the chance of looking
to the image increased as the word unfolded and eventually plateaued after the word ended.

We used a mixed-effects logistic regression model to estimate the probability of fixating on
the target image over time for each participant. We fit the model using the lme4 package
(vers. 1.1.15; D. Bates, Mächler, Bolker, & Walker, 2015) in the R programming language
(vers. 3.4.3). Although our vocabulary analyses use data from 109 participants, we used
eyetracking data from 122 typically developing participants to fit the growth curve model so
the data from the 13 additional participants would strengthen the model. See the
Supplemental Appendix for detailed model results.

We modeled time using a cubic orthogonal polynomial. That is, our predictors were a
constant term, (linear) time1, (quadratic) time2 and (cubic) time3, and the time terms were
scaled and centered so they were orthogonal and therefore uncorrelated. Because we used
transformations of time, the constant did not estimate the predicted value at time = 0, but
instead it estimated the area under the curve: the average log-odds of fixating on the target
over the whole window.

The fixed effects of this model estimated an accuracy growth curve for an average
participant. Of interest were the constant and linear-time terms. Because the constant term
corresponded to the area under the growth curve, the model estimated an average probability
of −0.297 logits (.43 proportion units) over all time samples. The linear time term captured
the overall steepness of the growth curve. Ignoring the quadratic and cubic features of the
growth curve, the linear term estimated an increase of 0.05 logits per 50 ms. At 0 logits (.5
proportion units), where the logistic function is steepest, an increase of 0.05 logits
corresponds to an increase of .012 proportion units. At chance performance (.25 proportion
units), this effect corresponds to an increase of .009 proportion units.
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We allowed the constant and time terms to vary randomly within participants. These random
effects quantified how an individual child’s growth curve differed from the group average,
so they provided measures of individual differences in lexical processing. Specifically, the
constant terms provided a measure of overall accuracy, and the linear-time terms provided a
measure of processing efficiency.

To visualize model-derived lexical processing measures, we divided the 109 children in the
main analysis into thirds based on their linear-time coefficients. The faceted plot in Figure 2
shows growth curves for children with low, middle, and high linear trends, and the curves
become steeper as the linear trend increases. For example, in the interval from 500 to 1,500
ms, each group’s average proportion of looks to the familiar image increased by .17, .32
and .44. For children with higher slopes, the probability of fixating on the named image
increases more quickly over time, so these children demonstrate more efficient lexical
processing.

We can also quantify the lexical processing efficiency of each group by calculating the
average linear-time parameter in each group and determining how much the probability
increases when the average linear-time estimate is added to 0 logits. The predicted increase
was .007 proportion units per 50 ms for children in the bottom group, .013 for children in
the middle group, and .018 for children in the top group. By this measure, the children in the
fastest group were more than twice as fast as the children in the bottom group.

Accuracy was related to processing efficiency. The by-child constant and linear time random
effects were moderately correlated, r = .31; the children with steeper growth curves looked
more to the target overall. The groups visualized had average looking proportions of .4, .45,
and .45. Peak accuracy was also related to processing efficiency. We computed an
asymptote for each child’s growth curve as the median value from 1,500 to 2,000 ms, and
the average asymptote for each group was .51, .63, and .71. These asymptotes were highly
correlated with by-child constant effects, r = .79, and linear time effects, r = .80.

Analyses
Descriptive statistics

Table 1 presents summary statistics. The EVT-2 and PPVT-4 standard scores describe a
child’s ability relative to their age using an IQ-like scale (mean = 100, SD = 15). The
children in this cohort had vocabulary scores approximately 1 SD greater than test-norm
averages. Receptive and expressive vocabulary growth scale scores were highly correlated at
both time points, rT1 = .79, rT2 = .78. Table 2 presents correlations for Time 1 measures.
Most (92) of the children came from high maternal-education families (i.e., college or
graduate degrees). Of the remaining children, 11 came from middle maternal-education
families (at least two years of college, associate’s degree, or trade school degree), and 6
from low maternal-education families (high school diploma or less, or less than two years of
college).
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Regression analyses

We used a Bayesian, estimation-based analytical approach: The aim is to estimate the
magnitude and direction of effects as well as the uncertainty about those effects. In Bayesian
models, we update our prior information based on the likelihood of the data—in other
words, how well the data “fit” that prior information. The updated prior information
constitutes the posterior distribution. Each sample from the posterior distribution represented
a plausible set of parameters that is consistent with the observed data. We used this
technique so that we could provide 95% uncertainty intervals for the parameter estimates.
These intervals have an intuitive interpretation: We can be 95% certain the “true” value of a
parameter, for the given model and data, is contained within its 95% uncertainty interval.
This feature differs from frequentist confidence intervals which do not contain any
distributional information about a given statistical effect (Kruschke & Liddell, 2017).
Because the posterior contains plausible parameter values, we can measure our uncertainty
about an effect’s magnitude and direction. For example, if an interval spanned a large
positive range, e.g., [3, 24] for some IQ-like standard scores, we would conclude that the
effect is positive but that the size of the effect was very uncertain.

We fit Bayesian linear regression models using Stan (Carpenter et al., 2017) via the
RStanARM package (vers. 2.17.3) in R. All predictors and outcome measures were scaled to
have a mean of 0 and standard deviation of 1. We used weakly informative normal
distributions as the priors of regression parameters: Intercept ~ Normal(μ = 0 [mean], σ = 5
[SD]) and Other Effects ~ Normal(μ = 0, σ = 1). This prior information implies that before
seeing the data, we consider negative and positive effects to be equally plausible (μ = 0), and
we expect 95% of plausible effects to fall between ±1.96. We call this distribution “weakly
informative” because of disciplinary expectations. In child language research, an effect
where a 1-SD change in x predicts a 1-SD change in y represents a profound effect. Because
our prior information generously includes such effects, they are “weakly informative”.

Hamiltonian Monte Carlo sampling was performed on four chains each with 1,000 warm-up
draws and 1,000 sampling draws, yielding 4,000 total draws from the posterior distribution.
For all parameters reported, we used the median value of the parameter’s posterior
distribution as its “point” estimate. These median parameters values were used to calculate
R2 statistics as the conventional, unadjusted ratio of explained variance over total variance:
R2 = Var(ŷ [fitted]) / Var(y [observed]).

In all analyses, we used standardized average hourly adult word count as our measure of
language input, and standardized linear-time coefficients (growth curve slopes) as our
measure of processing efficiency. There was a small positive association between language
input and lexical processing efficiency at Time 1, R2 = .055, such that a 1-SD increase in
input (an additional 468 words per hour) predicted a 0.24-SD increase in lexical processing
efficiency, 95% Uncertainty Interval [0.06, 0.42].

Expressive vocabulary—There was a modest effect of input on expected expressive
vocabulary at Time 2, R2 = .074. A 1-SD increase in input predicted an increase of
vocabulary of 0.27-SD units, UI [0.08, 0.45]. There was a strong effect of lexical processing,
R2 = .238. A 1-SD increase in processing efficiency predicted an increase in vocabulary of
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0.49-SD units, UI [0.32, 0.66]. Estimates from each of these models are presented in Figure
3.

We also regressed expressive vocabulary onto input and processing, R2 = .264. We observed
a reliable effect of processing: For a child with an average amount of language input, a 1-SD
increase in processing predicted an increase in vocabulary of 0.45 SD-units, UI [0.27, 0.61].
For a child with average processing efficiency, however, a 1-SD increase in input predicted
a 0.17-SD increase in vocabulary size, UI [0.00, 0.34]. Lexical processing was a stronger
predictor of vocabulary size than home language input, but there was also a modest, positive
association between adult word counts and future expressive vocabulary size. There was not
a credible Processing × Input interaction effect. That is, both positive and negative
interaction effects were plausible, UI [−0.20, 0.13].

Receptive Vocabulary—There was a moderate effect of average hourly adult word count
on receptive vocabulary size, R2 = .107. A 1-SD increase in input (468 words per hour)
predicted an increase of 0.33 SD units, 95% Uncertainty Interval [0.15, 0.50]. There was a
strong effect of lexical processing efficiency, R2 = .292. A 1-SD increase in processing
efficiency predicted an increase in vocabulary of 0.54 SD units, UI [0.37, 0.70]. Estimates
from each model are depicted in Figure 4.

We also regressed vocabulary onto input and processing efficiency. Both predictors were
associated with vocabulary size, R2 = .334. There was a strong effect of processing, βproc =
0.49 SD units, UI [0.32, 0.66], whereas there was a modest effect of input, βinput = 0.21, UI
[0.05, 0.37]. Because both input and processing showed positive effects, we also tested
whether processing moderated the effect of input. There was not a credible Processing ×
Input interaction effect, UI [−0.15, 0.18]. These results indicate that lexical processing was a
more robust predictor of future receptive vocabulary than average hourly adult word count,
and also that adult word count had a positive effect on vocabulary over and above lexical
processing ability.

Vocabulary Growth

We showed above that lexical processing efficiency and language exposure predicted
vocabulary size one year later. These analyses are not adequate models of vocabulary
growth because they do not account for vocabulary size at Time 1. If we think of home
language input as a treatment variable—as language enrichment interventions do—then the
analyses above ignored the pretreatment outcome levels.

The following analyses included Time 1 vocabulary size as a covariate so that we could
model the effects of input and lexical processing. For each analysis, we started with a
reference model in which we regressed vocabulary scores at Time 2 onto Time 1 vocabulary
scores. We then added other predictors to see whether they had a credible effect over and
above Time 1 vocabulary. These models allow us to examine the “value-added” properties
of language exposure and lexical processing efficiency. The best performing model for each
vocabulary type are described in detail in the Supplemental Appendix.
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Expressive Vocabulary—As expected, there was a strong relationship between Time 1
and Time 2 expressive vocabularies, R2 = .632. A 1-SD increase vocabulary scores at Time
1 predicted a 0.79-SD increase at Time 2, 95% Uncertainty Interval [0.68, 0.91]. There was
not a credible effect of adult word count, UI [−0.12, 0.13]. There was no longer a 95%
credible effect of processing, UI [−0.04, 0.24]. The posterior distribution of the processing
effect was mostly positive, P(0 < βProcessing) = .924. If we stipulate that values between [0,
0.05] are so small that they are practically equivalent to 0, then 76.3% of posterior samples
showed a non-null positive effect. Therefore, the data suggests a positive effect of lexical
processing on expressive vocabulary growth. There was not a credible interaction between
input and lexical processing efficiency, UI [−0.08, 0.15].

We compared these models and ones reported earlier using the Widely Applicable
Information Criterion (WAIC; Table 3) computed via the loo R package (vers. 1.1.0;
Vehtari, Gelman, & Gabry, 2017). Like other information criteria metrics (e.g., AIC or
BIC), the WAIC estimates a model’s predictive accuracy for out-of-sample data, and when
comparing two models, the one with the lower WAIC is preferred. Because each observation
independently contributes to the overall WAIC value, the WAIC is accompanied by a
standard error (Vehtari et al., 2017) which helps quantify the uncertainty around WAIC
point values. We also computed Akaike weights for WAIC values; these values provide a
relative weighting or conditional probability estimate for each model (Wagenmakers &
Farrell, 2004).

The models that do not include Time 1 vocabulary should be given no weight. Of the other
models, we prefer the models without language input over those that include this predictor.
Finally, we assign relatively equal weight to the model with just Time 1 vocabulary and the
model with both lexical processing and Time 1 vocabulary. We would expect these models
to perform the best on new data. Model comparison therefore provided little confirmatory
support for a positive effect of lexical processing over and above Time 1 vocabulary.

Receptive Vocabulary—There was a strong relationship between Time 1 and Time 2
receptive vocabulary, R2 = .584. A 1-SD increase in vocabulary at Time 1 predicted a 0.76-
SD increase at Time 2, UI [0.64, 0.88]. There was a positive effect of adult word count over
and above Time 1 vocabulary such that a 1-SD increase in input predicted a 0.15-SD
increase in expected vocabulary, UI [0.03, 0.27], R2 = .606. Similarly, a 1-SD increase in
processing efficiency predicted an increase in receptive vocabulary of 0.23 SD units, UI
[0.10, 0.37], R2 = .626.

We also regressed receptive vocabulary onto all three predictors, R2 = .640. There was a
small effect of input over and above Time 1 vocabulary and lexical processing, βInput = 0.12,
UI [0.00, 0.24]. There was a moderate effect of processing, βProcessing = 0.21, UI [0.08,
0.35]. We did not observe a credible interaction of input and lexical processing, UI [−0.07,
0.16].

We compared the models using the WAIC (Table 4). We would expect the models with
Time 1 vocabulary, lexical processing and language input as predictors to have to the best
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predictive accuracy on out-of-sample data. The most important variables for reducing WAIC
were Time 1 vocabulary, followed by lexical processing, and lastly language input.

Receptive-Expressive Differences—Once we took Time 1 vocabulary into account,
we observed different predictive effects of adult word count and lexical processing for
expressive versus receptive vocabulary. For expressive vocabulary, input no longer had a
credible effect, and lexical processing probably had a small positive effect but evidence for
this effect is limited. In contrast, both predictors independently showed positive effects on
receptive vocabulary, although the processing effect was larger than the input effect.

Based on these analyses alone, however, it would be invalid to claim receptive vocabulary
was more sensitive to child-level factors than expressive vocabulary (Gelman & Stern,
2006). To evaluate these differences between receptive and expressive vocabulary, we have
to estimate them. To compare both vocabulary outcomes simultaneously, we fit a
multivariate regression model using Stan tools from the brms R package (vers. 2.1.0;
Bürkner, 2017). As above, all variables were standardized to have mean 0 and standard
deviation 1. We regressed Time 2 vocabulary onto Time 1 vocabulary, language input,
lexical processing and the input-processing interaction for each vocabulary type as in
preceding analyses. But to join the two outcomes, we also modeled the correlation between
the residual error terms σRec and σExp. The error terms were moderately correlated, ρ = .32,
UI [.13, .50].

The multivariate model maintained the results of the univariate models (see Figure 5):
Strong effects of Time 1 vocabulary, reliable effects of input and processing on receptive
vocabulary, and a suggestive effect of processing on expressive vocabulary. For each
posterior sample, we computed the difference between receptive and expressive vocabulary
coefficients (e.g., βInput[Diff] = βInput[Rec] − βInput[Exp]), yielding a distribution of effect
differences. Input had a stronger effect on receptive vocabulary that expressive vocabulary,
βInput[Diff] = 0.12, P(0 < βInput[Diff]) = .954. A similar difference was observed for lexical
processing, βProcessing[Diff] = 0.11, although it was slightly less probable the receptive effect
was greater than the expressive effect, P(0 < βProcessing[Diff]) = .922. Lexical processing
probably had a stronger effect on receptive than expressive vocabulary.

Discussion
We asked how lexical processing efficiency and home language input predicted vocabulary
size one year later in a large sample of preschoolers. We measured lexical processing using
an eyetracking experiment and model-derived estimates of how quickly on average a child’s
gaze shifted to a named image. We measured language input using the average number of
adult words per hour from LENA recordings, and we measured expressive and receptive
vocabulary directly using standardized tests. We first tested how language input and lexical
processing at age 3 predicted vocabulary size at age 4 without controlling for age-3
vocabulary levels. In these baseline analyses, both measures reliably and independently
predicted vocabulary size. The processing effect was 2–2.5 times larger in magnitude than
the input effect. Lexical processing and language input were weakly correlated, r = .24, and
there were no credible interaction Processing × Input effects. These baseline analyses
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support the conclusions that lexical processing efficiency was a more important predictor of
future vocabulary than language input and that word recognition efficiency did not constrain
the beneficial effects of language exposure on future vocabulary size.

We next examined how input and lexical processing related to vocabulary growth, by
controlling for age-3 vocabulary. The best predictors of Time 2 expressive vocabulary were
Time 1 expressive vocabulary followed by lexical processing. The processing effect was less
certain and smaller in magnitude compared to the robust effects observed in models of
receptive vocabulary or in the baseline models that did not control for Time 1 vocabulary.
Comparison of the expressive vocabulary models indicated that one should assign
approximately equal weight to a model with both lexical processing and Time 1 vocabulary
and a model with only Time 1 vocabulary. In contrast, the best predictors of Time 2
receptive vocabulary were Time 1 receptive vocabulary, followed by lexical processing and
adult word count. Both processing and input provided additional predictive information over
and above Time 1 vocabulary, and lexical processing had a larger effect than hourly adult
word count. Finally, we estimated the differences in the effects on receptive versus
expressive vocabulary, and the input effect was larger for receptive vocabulary while the
processing effect was probably larger for receptive vocabulary.

The difference in results for expressive versus receptive vocabulary was unexpected, given
the reliable correlation between the two measures, r = .81 at ages 2–5 (L. M. Dunn & Dunn,
2007, p. 60). Child who heard more words from their caregivers could understand more
words one year later, but they could not necessarily produce more words. Why would
language exposure be more related to receptive than expressive vocabulary? The differences
for expressive and receptive vocabulary may simply reflect differences in the tests used to
measure them. Across the entire course of the PPVT-4, the prompt remains the same (show
me X). But over the course of the EVT-2, the prompts change from what is this to include
prompts that demand metalinguistic knowledge (e.g., tell me another word for X). Thus, it
may be the case that the PPVT-4 measures only receptive vocabulary, while the EVT-2
measures both expressive vocabulary and metalinguistic ability. Lexical processing
efficiency and language input may be less related to metalinguistic ability than they are to
vocabulary size.

Alternatively, the different results for expressive and receptive vocabulary may reflect the
fact that recognition is easier than production. Being able to name an object—to activate the
word’s semantic representation and its phonological representation then carry out a motor
plan—demonstrates a greater sign of mastery than being able to associate the word to an
appropriate referent. The children who heard more words had more experience and exposure
to words, giving them a broad base of shallow knowledge for word recognition. This
interpretation would suggest that measures of input diversity (input types) would be even
more predictive of future receptive vocabulary than simple quantity. Support for this
interpretation also comes from Edwards et al. (2014). Using structural equation modeling,
they found a direct relation between SES and receptive vocabulary, but only an indirect
relation between SES and expressive vocabulary; the relation between SES and expressive
vocabulary was mediated by receptive vocabulary.
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A similar line of reasoning applies to the processing effect. We measured processing as
response speed during a listening task, not a naming task. It captures a child’s ability to
activate a word’s semantic representation in a timely manner. These demands are more
clearly related to our receptive vocabulary task, whereas the expressive vocabulary task
additionally required the child to talk. Nevertheless, we concluded that faster processing
probably predicted larger expressive vocabularies. Approximately, 75% of the posterior
samples indicated a positive, non-null effect. Naming an object still requires activation of a
word’s lexical representations, so it makes sense that the lexical processing efficiency would
still matter for expressive vocabulary.

Throughout our analysis, we never observed a credible interaction effect between lexical
processing and language input. Word recognition efficiency did not constrain the beneficial
effects of language exposure on future receptive vocabulary size. One interpretation of these
findings is that these children were fast enough at recognizing words that processing did not
impose more of a bottleneck on vocabulary growth. Developmentally, that bottleneck may
be observed in younger children than those in this sample. The youngest children in this
study were 28 months, an age at which the average child produces about 500 words and
recognizes at least 3 times that amount. In contrast, at 18 months the average child produces
only about 50 words and recognizes about 250 (Frank et al., 2016). After about 18 months,
children’s vocabularies start increasing rapidly. At this point, it may be the case that
processing efficiency no longer interacts with the quantity of language input. More research
on children from 18 to 30 months is needed to evaluate this claim and to determine the time
course of the relation among processing efficiency, language input, and vocabulary growth.

Our study elaborated on the work of Weisleder and Fernald (2013), but differed in important
ways. Notably, our sample included children who were older in age, and we tested these
children’s vocabularies directly. Additionally, we used LENA’s automated measures of
adult word count, whereas that study used LENA word counts from just the segments of
recordings that listeners had classified as child-directed. Limitations of our study include its
observational design and the relatively homogeneous demographics of the families. This
study was observational, so the analyses here describe statistical relationships. We did not
manipulate language input, so we cannot establish causal links between language input and
other measures. Moreover, most (92/109) children came from high maternal-education
families (i.e., college or graduate degrees), whereas Weisleder and Fernald (2013) recruited
29 children from low-SES families. The combined SES and age differences make it difficult
to compare these two studies directly. Although most of the participants in our study were
demographically homogeneous, they varied in language input, vocabulary size, and
processing efficiency, so they provided an informative test of how processing and input
predict word learning. We found input and processing had positive effects on receptive
vocabulary growth, but had little influence on expressive vocabulary growth.

Once we controlled for Time 1 vocabulary size, the effects of lexical processing and
language input became less robust and less certain, especially for expressive vocabulary. It
is essential that studies about changes in vocabulary size obtain a baseline vocabulary
measurement. Our results were different when we measured predictors of vocabulary size as
compared to predictors of vocabulary growth. This is not surprising, given that individual
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differences in vocabulary size are observed at 12 months or even earlier and increase with
age. Unlike previous studies, this study measured both receptive and expressive vocabulary
—if only one of these measures had been used as the sole measure of vocabulary
knowledge, we would have drawn different conclusions.

Our findings have important implications for interventions aimed at increasing children’s
vocabulary. First and foremost, these interventions must start early. At Time 1, children in
this study were only 28 to 39 months of age. Still, for both receptive and expressive
vocabulary, vocabulary size at this young age was by far the strongest predictor of
vocabulary size one year later. Based on our results, increasing the quantity of linguistic
input for 3-year-olds is not going to be an effective intervention strategy. Other research has
suggested that children attend to different features of their ambient language as their
language abilities develop (cf. review in Lidz & Gagliardi, 2015; Rowe, 2012). For children
of this age, sheer quantity of language input may not be as relevant or predictive as
complexity or other features of the child-directed speech. The lack of evidence for quantity
effects does not imply that quality is any more important or predictive of vocabulary growth
at this age, but it suggests that measures like adult word count provide only a first
approximation about the number of informative examples and learning opportunities
available to the child. Language stimulation benchmarks and goals for children of this age,
we would conclude, are better framed as time spent on activities, such as shared-book
reading, or discussing events outside of the here and now (Rowe, 2012), rather than focusing
simply on increasing language input.

These findings add to our understanding for vocabulary development. They suggest that the
early relations among processing efficiency, input, and vocabulary size may decrease as all
children become more efficient language processors in their third year of life. While
differences in processing efficiency continue to exist, they may not create the bottleneck on
vocabulary growth that is observed for children from 18 to 24 months. They also add to the
very large literature supporting early intervention—children say their first words at about 12
to 14 months of age, but differences in vocabulary size even as early as 28 months are
highly predictive of vocabulary growth one year later and are far more important than
language input or processing efficiency.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Research highlights

• We examine how home language input and word recognition efficiency at
28–39 months predict vocabulary size one year later.

• Word recognition efficiency does not constrain the effect of home language
input on word learning at this age.

• Receptive vocabulary is more sensitive to variability in language input and
lexical processing than expressive vocabulary.
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Figure 1.
Spaghetti plot of raw individual accuracy growth curves for 109 participants. Each light line
represents the observed proportion of looks to the target image over time for one participant.
The darker line represents the average of the growth curves.
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Figure 2.
Model-fitted accuracy growth curves for participants grouped by linear-time coefficients.
Participants were divided into tertiles. Light lines represent model-estimated growth curves
for individual children and dark lines represent the average of growth curves within each
facet.
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Figure 3.
Regression models for expressive vocabulary. The heavy line in each plot represents the
median of the posterior distribution of the model. Light lines represent 500 random draws
from the posterior. The lines are included to depict uncertainty of the modeled relationship.
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Figure 4.
Regression models for receptive vocabulary. The heavy line in each plot represents the
median of the posterior distribution of the model. Light lines represent 500 random draws
from the posterior. The lines are included to depict uncertainty of the modeled relationship.

Mahr and Edwards Page 24

Dev Sci. Author manuscript.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5.
Posterior median and 95% and 90% uncertainty intervals for the vocabulary effects and
effect differences.
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Table 1

Summary statistics for Time 1 and Time 2 (N = 109).

Time Measure Mean SD Range

1 Age (months) 32.9 3.4 28–39

Hourly Adult Word Count 1207.0 467.6 112–2531

Exp. Vocab. (EVT-2 GSVs) 118.9 11.6 81–148

Exp. Vocab. (EVT-2 Standard) 118.4 14.2 81–160

Rec. Vocab. (PPVT-4 GSVs) 109.2 16.6 70–151

Rec. Vocab. (PPVT-4 Standard) 116.0 15.6 84–153

2 Age (months) 45.1 3.5 39–52

Exp. Vocab. (EVT-2 GSVs) 136.4 11.4 105–158

Exp. Vocab. (EVT-2 Standard) 119.8 14.6 80–155

Rec. Vocab. (PPVT-4 GSVs) 131.4 14.3 93–160

Rec. Vocab. (PPVT-4 Standard) 121.8 13.9 90–151
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Table 2

Correlations among Time 1 measurements.

Age (months) EVT-2 GSVs PPVT-4 GSVs Processing efficiency

EVT-2 GSVs .40

PPVT-4 GSVs .50 .79

Processing efficiency .31 .53 .47

Hourly adult word count −.12 .34 .24 .24
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Table 3

Model comparisons for expressive vocabulary.

Predictors WAIC ± SE Akaike Weight

T1 205.1 ± 14.5 .388

T1 + Processing 205.6 ± 14.9 .301

T1 + Input 207.2 ± 14.4 .138

T1 + Input + Processing 207.3 ± 14.8 .127

T1 + Input + Processing + (Input × Processing) 209.4 ± 14.8 .046

Input + Processing 283.3 ± 14.6 .000
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Table 4

Model comparisons for receptive vocabulary.

Predictors WAIC ± SE Akaike Weight

T1 + Input + Processing 206.8 ± 15.7 .516

T1 + Input + Processing + (Input × Processing) 207.9 ± 15.2 .303

T1 + Processing 209.1 ± 14.7 .170

T1 + Input 214.8 ± 15.7 .009

T1 218.8 ± 14.8 .001

Input + Processing 272.0 ± 14.9 .000
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